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Dynamic survival prediction in intensive care units from

heterogeneous time series without the need for variable selection or

pre-processing

Jacob Deasy∗† Pietro Liò† and Ari Ercole‡

ABSTRACT

Background Intensive Care Units (ICUs) treat the most critically ill patients in the hospital. Extensive
monitoring and investigation generates large quantities of data which may contain numerous, time-sensitive
trends and correlations which are difficult for clinicians to systematically evaluate. In principle computers
do not suffer this limitation, but the sheer complexity of the data means that this approach has previously
required careful variable selection and data cleaning. This discards potentially pertinent information and is a
significant barrier to implementation and generalisability in a heterogeneous ecosystem of Electronic Health
Records (EHRs). In this work we present a simplified machine learning pipeline and model that uses the
entire uncurated EHR for prediction of in-hospital mortality at arbitrary time intervals, using all available
chart, lab and output events, without the need for pre-processing or feature engineering.

Methods Data for more than 45,000 American ICU patients from the MIMIC-III database were used to
develop an ICU mortality prediction model. All chart, lab and output events were treated by the model in the
same manner inspired by Natural Language Processing (NLP). Patient events were discretized by percentile
and mapped to learnt embeddings before being passed to a Recurrent Neural Network (RNN) to provide
early prediction of in-patient mortality risk. We compared mortality predictions with the Simplified Acute
Physiology Score II (SAPS II) and the Oxford Acute Severity of Illness Score (OASIS). Data were split into an
independent test set (10%) and a ten-fold cross-validation was carried out during training to avoid overfitting.

Findings 13,233 distinct variables with heterogeneous data types were included without manual selection or
pre-processing. Recordings in the first few hours of a patient’s stay were found to be strongly predictive of
mortality, outperforming models using SAPS II and OASIS scores within just 2 hours and achieving a state
of the art Area Under the Receiver Operating Characteristic (AUROC) value of 0·80 (95% CI 0·79-0·80) at
12 hours vs 0·70 and 0·66 for SAPS II and OASIS at 24 hours respectively. Our model achieves a very strong
performance of AUROC 0·86 (95% CI 0·85-0·86) for in-patient mortality prediction after 48 hours on the
MIMIC-III dataset. Predictive performance increases over the first 48 hours of the ICU stay, but suffers from
diminishing returns, providing rationale for time-limited trials of critical care and suggesting that the timing
of decision making can be optimised and individualised.

Interpretation Simple association of all events with a patient stay ID and a timestamp allows for the
incorporation of patient-specific data. More flexible model intake leads to increased model capacity when
differentiating mortality risk between patients due to the expressive power of non-physiological records. Deep
learning models can outperform traditional severity scores in this domain and can increasingly be understood
through both time and variable space to generate novel connects between ICU patient features. Interpretable
and dynamic machine learning models are key in critical care, and our results outline how to progress towards
the transformation of advanced models into time-sensitive, transparent, and dependable clinical tools.
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INTRODUCTION

Clinicians in the intensive care unit (ICU) frequently need to make outcome- and time-critical decisions. To
this end, ICU patients are routinely highly investigated and monitored, providing data to alert health care
providers to deterioration and optimally inform such decision making. As a result, the ICU has higher data
volume, variety and velocity than any other clinical setting. Such considerations make it a challenge to fully
appreciate all the information available as well as inter-temporal relationships between clinical variables,
particularly in the context of complex antecedent events and disease histories in a dynamically evolving
environment.

On a day-to-day basis, it is unlikely that clinicians fully, systematically and robustly appraise all the
information routinely available to them. For example, the fact that it is possible for algorithms with less data
to outperform clinicians for example when considering which ICU patients can successfully be stepped down
[1], suggests that not all predictive power available is exploited in decision making. This may compromise
outcomes. In more extreme circumstances, human factors research has demonstrated that being overwhelmed
by data leads to unconscious, and therefore potentially sub-optimal, exclusion of available information to once
again make rapid decision making tractable, and this is well illustrated in the ICU by the phenomenon of
‘alarm fatigue’ [2, 3] which may compromise patient safety acutely.

Such considerations suggest that critical care is an area that is highly likely to benefit from successful
exploitation of EHRs to assist clinicians in making optimally informed decisions [4, 5]. However, any
technology to help the clinician must deal with data that is highly heterogeneous both in type (ranging from
continuous variables such as laboratory results to event data such as interventions, drug administrations or
clinical assessments) and in sampling (which ranges from demographic parameters through to time-series
data). Furthermore the data may be subject to variable or irregular sampling and possibly informative
missingness [6].

A final challenge is that ICU admissions are dynamic with prognostic accuracy which changes over time
[7]. Clinicians must continually reconsider prognosis likelihoods while attending to the readings of multiple
patients, each of whom may have a vast array of differing predictor variables. Despite this, temporal changes
in prognostic ability during ICU admission has received relatively little attention to-date.

Recently, the authors of [8] presented the first attempt to use all available patient data by mapping
the entire EHR to a highly curated set of predictor variables, structured inline with the categories of data
available. Although this method achieved strong performance, risk assessment was EHR format-specific,
static, and reliant on an ensemble of diverse model structures. Nevertheless, we conjecture that the embedding
mechanism outlined therein could be applied to the higher resolution setting of the ICU to usefully provide
a dynamic estimate of survival probability as a composite surrogate for patient state. However, we extend
this method to make it time sensitive; allowing predictions to be made at arbitrary points, optimally utilising
all information available at the time. Our objective was to design and implement a pipeline for prediction
which incorporated all chart, lab and output events in the same way without the need for variable selection,
curation or pre-processing. Furthermore, we sought to evaluate model explainability by ranking the features
the model had paid attention to when making its prediction.

METHODS

Data sources

We built and validated a computational clinical support model using retrospective analysis of adult patient
data using the MIMIC-III database [9]. The database contains high-resolution patient data, including:
demographics, vital sign time-series, laboratory tests, illness severity scores, medications and procedures,
fluid intake and outputs, clinician notes, and diagnostic coding. The median age of adult patients is 65·8
years (Q1 − Q3: 52·8–77·8), 55·9% patients are male, and in-hospital mortality is 11·5% [9]. Between the
two EHR systems that comprise MIMIC-III, CareVue and MetaVision, in total the overall dataset contains
330,712,483 chart events, 27,854,055 lab events and 4,349,218 output events.

Procedures
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LABEL VALUE TOKEN

Eye Opening 4 Spontaneously Eye Opening 4 Spontaneously

Heart Rate 84 Heart Rate 8

Code Status Full Code Code Status Full Code

Table 1: Examples of discrete token creation alongside percentile-based quantization and tokenization of
continuous variable. Discrete variables remain discrete, while values that can be converted to floating point
numbers are considered continuous and separated into percentile-based bins.

We follow the patient exclusion criteria outlined in the MIMIC-III benchmark [10], by excluding patients if the
patient is less than 18 years old at the time of ICU admission or the patient’s mortality is not documented, and
excluding events if the event cannot be mapped to an ICU stay or the event cannot be mapped to a hospital
admission. Patients with multiple stays in the ICU were included in the dataset. We did not deliberately
include patient demographic information, although it is often recorded as part of the chart events just after
admission. On the basis of outcome records (i.e. survival or non-survival), we calculated in-hospital mortality
- defined as death on any ward during hospital admission.

Unlike traditional approaches, we retain all of the chart, lab and output events for each stay without
any data cleaning, outlier removal or domain-specific knowledge. The processing we perform is enough to
assign a patient, a stay-ID and a timestamp to each event - a process which is independent of EHR data
formatting or structure. Our model takes the entire patient timeseries as input, regardless of event type,
frequency or cardinality. We note that, because we do not select for clinical variables, after event association
with patient stays, our EHR dataset contains 208,572,237 events instead of the 31,868,114 employed in [10]
and all subsequent papers relying on the MIMIC-III benchmark. Due to the increased number of variables
used by our model, after processing we also have a higher number of patients and stays available, supporting
the evidence in favour of models which can incorporate broad EHR data.

To distinguish between discrete and continuous variables, we label events by whether their values can be
converted to a floating point number. This captures all integer or decimal events, such as heart rate or blood
pH, and ignores discrete labels (E.g. ‘Code Status Full Code’). Additionally, unusual or faulty cases, such
as readings with multiple decimal places are designated as discrete, making our model robust to and aware
of consistent errors which potentially correlate with patient outcomes. For missing readings, we use a zero
vector embedding, but note that alternatively using a dense embedding in our model simply induces a bias
towards a different point in the latent space. As a result, for both invalid and missing values, our model
capitalises on information present from ‘informative missingness’ [6, 11]. We tokenize continuous values by
quantizing them into discrete bins by percentile - our default model uses 20 such bins. Multiple quantiles
reinforce the robust nature of our model, as any outliers (e.g. a regular mistake in Blood pH data is to report
a pH of 5·5, see figure 3a) are likely to be contained in tokens at the periphery of a variable’s distribution,
and the model can learn to ignore these extremes . Examples of this tokenization and quantization procedure
are given in Table 1 and Figure 3.

Model development

Patient data were considered as a multivariate timeseries defined by: the times when patient events were
recorded, the sequence of indexes mapped from each patient’s discretized timeseries, and the set of outcomes
for each patient episode. In the case of mortality prediction, patient survival was labelled with the value
1, and patient death was labelled 0. Our baseline model used snap shots that contained all chart, lab and
output events for each hour of a patient’s timeseries. RNN models were trained on chart, lab and output
data that met the inclusion criteria within the chosen time period. A 10-fold cross-validation scheme was
used to prevent overfitting, in addition to an independent test set. Data for ICU admissions were split into
a training set (90%) and an independent test set (10%). For each cross-validation fold, training data were
divided into a training set and a 1000 patient validation set, with the split stratified by survival to ensure
balanced training. A LSTM RNN architecture of depth one with a single output head per time step was
trained by backpropagation on the training set. As the highly variable and patient-specific nature of EHR
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Figure 1: Diagram of our model. In panel A, continuous data, such as pH, FiO2 and heart rate, are discretized
into percentile-based bins, allowing both continuous features to be mapped to an embedding. In panel B, we
see both discrete chart and lab events, from a diverse range of investigations, which are equivalently aggregated
by the model. In panel C, both continuous and discrete events from one hour of patient timeseries data are
embedded and aggregated, using a learnt variable importance ranking. The weighted average embedding
is then used as input to a LSTM recurrent neural network which generates an updated dynamic prediction
of in-hospital mortality probability each hour and updates an internal representation of the patient state.
Dynamic prediction allows for continual patient monitoring as new data is accumulated and used to update
outcome probabilities. Laboratory values, physiological readings, and admission information was from the
first 48 hours after ICU admission. [LSTM: Long short-term memory recurrent neural network architecture;
FiO2: Fraction of inspired oxygen]
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data is prone to overfitting, training was stopped once the validation set AUROC plateaued for more than 5
epochs. During training, model performance on the validation set was continually assessed, and the optimal
model for each cross-validation fold was selected from the epoch with the best validation set performance.

As EHR data is known to be broad and highly variable, even after all continuous variables in the
relatively small MIMIC-III database were binned into 20 discrete percentile categories, the number of variables
remaining was still 58,704. Therefore, traditional methods, such as learning a transition dynamics matrix or
one-hot encoding all of the input variables, would be prohibitively expensive and prone to overfitting. To
circumvent this potential over-parameterization, our model takes inspiration from natural language processing
(NLP). Much like in NLP, where input and output vocabularies for translation are often very large, in the
case of many thousands of medical tokens it is more computationally efficient to let the model learn a
low-dimensional vector representation of each token.

We map tokens recorded in the model’s medical vocabulary according to

Discrete event tokens in one hour
︷ ︸︸ ︷







Eye Opening 4 Spontaneously
Heart Rate 8

Code Status Full Code
...







→

Corresponding learnt vectors
︷ ︸︸ ︷







-0·22, 0·34,. . . , 0·83
0·52, 0·03,. . . , -0·28
-0·21, 0·17,. . . , 0·89

...







. (1)

The size of the embedding vectors was optimized via grid search over values 16, 32 and 48. Embedding
dropout [12, 13] was applied to regularize the network and prevent the model from overfitting to strongly
predictive tokens which may not be available for all patients. For each patient, we allow a maximum of
10,000 events over the initial 48 hours of their stay in the ICU. For the few patients who have more than
10,000 events, we extract their final 10,000 tokens. We tested using an average vector per time period, vectors
for both tokens and time period, and aggregating vectors with learnt weights. The final method performed
on par with the first two, but has the added advantage of producing a ranked list of variable importance
after model training - beneficial for understanding what information the model is prioritising. Therefore, we
aggregate each patient timeseries snapshot according to

Learnt weights
︷ ︸︸ ︷
[
w0, w1, w3, . . .

]

Learnt vectors
︷ ︸︸ ︷







-0·22, 0·34,. . . , 0·83
0·52, 0·03,. . . , -0·28
-0·21, 0·17,. . . , 0·89

...







=

Aggregated hourly vector
︷ ︸︸ ︷
[
0·04,-0·52,. . . ,-0·72

]
. (2)

Finally, we use a densely connected layer with a sigmoid activation function to output p(yi|Xi) ∈ [0, 1],
the probability of in-patient mortality given a patient’s timeseries, and optimize the parameters of our model
by minimising the binary cross entropy loss

L(y, ỹ) = −
N∑

i=1

T∑

t=0

Misclassified death loss
︷ ︸︸ ︷

ỹit log yi +

Misclassified survival loss
︷ ︸︸ ︷

(1− ỹit) log(1 − yi) , (3)

across each training batch and through time. The Adam optimizer [14] was used for training, output activation
function (sigmoid), batch size 128, and learning rate (0·0005) were kept constant across models. The number
of hidden neurons (32, 64, 128 and 256 units), as well as the probability of embedding drop-out were optimized
via a grid search over the models. To establish confidence intervals, we used the bootstrap algorithm [15] with
10,000 samples of the test set performance of the cross-validation models. A model summary is presented in
Figure 1.

RESULTS

Data from the MIMIC-III dataset were used for this study, including 46,476 patients with 61,532 ICU stays
at the Beth Israel Deaconess Medical Center in Boston, USA. We selected valid patients and stays by initially
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Figure 2: Distribution of mean token count per patient per hour, stratified by type, for the 48 hour cohort
using 20 discrete percentile bins for continuous variables.

following the selection presented in [10], before deviating due to the increased flexibility of our model. The
percent of stays with in-hospital deaths was 13·2% (2,797/21,139) and the proportion of long ICU stays
(greater than 7 days in the ICU) was 23·0% (4,868/21,139). The mean and median length of stay in the ICU
was 5·97 and 3·72 days respectively. During the first 48 hours in the ICU, an average admission had 1,268
events, drawn from a possible 2,353 unique event names. The data was split into training and test sets which
had chart, lab and output events available.

Patient event types over time are summarised in Figure 2. In the first few hours after admission, the
average patient has between 45 and 50 readings per hour. Despite the majority of events in any given
hour being chart events, in the first few hours there are also additional lab events as initial patient data is
accumulated. After the initial peak in readings per hour, the number of chart events recorded declines quickly
over the first 12 hours, before continuing to decline in a slower fashion for the remainder of each patient’s
stay. Finally, towards the 48 hour mark patient events are predominantly comprised of chart events, with an
average rate of less than 30.

The outcomes of our discretization pipeline for two variables, blood pH (PH ) and blood urea nitrogen
(BUN ), are displayed in figure 3. When employing 5 percentile-based bins in figure 3a, our pipeline
successfully discarded several 10s of thousands of outlier readings which are the result of technical faults
in recording equipment as they are not physiologically possible (e.g. blood pH below 7). Further dividing pH
values into 20 percentile-based bins in figure 3b, it is even possible to distinguish between different outlier
categories - each of which may have slightly different correlation with patient outcomes. In the case of blood
urea nitrogen, values are distributed more uniformly, with fewer outliers, so the main advantage of value
discretization lies in differentiating between populous patient categories towards the distribution’s centre of
mass.

For comparison with our model, the OASIS and SAPS II severity scores were calculated on the training
and test set. The distributions of both scores are depicted in Figure 4, demonstrating the similar spread
of scores between the two sets. Function hyperparameters for converting from severity score to mortality
probability were tuned on a 10-fold cross-validation of the training set using logistic regression and the
Levenburg-Marquardt curve fitting algorithm [16] for OASIS and SAPS II respectively. Figure 4 shows the
relatively shallow curves for our dataset in comparison to the respective original papers. As the difference
between cross-validation folds when tuning was negligible, the resulting AUROC value differences were also
negligible so we subsequently include only one fold of each severity score for clarity (see Figure 5).

For predicting inpatient mortality, the area under the receiver operating characteristic (AUROC) curve

6



(a) pH distribution, 5 bins. (b) pH distribution, 20 bins. (c) BUN distribution, 5 bins.
(d) BUN distribution, 20
bins.

Figure 3: Representative examples of the distribution of blood pH and blood urea nitrogen (BUN) illustrating
the effect of discretisation by ‘binning’. In our method, continuous variables are discretised by distribution
frequency so that all data types can be handled in the same way in the model. Colours exemplify 5 or 20
discrete categories established by our pipeline for any continuous variable, demonstrating outlier category
detection and the increased granularity in populous intervals found by percentile-based quantization. For
BUN the distribution is fairly continuous and binning creates a representation which naturally encodes the
concepts of ‘high’ or ‘low’ within the distribution. For variables such as pH however, the discretisation also
places artefactual values into one (a) or more (b) ‘outlier’ bins. If artefacts are random, the model should be
able to learn that such data points have no predictive value and can therefore be ignored.

(a) Train set score
distribution.

(b) Test set score
distribution. (c) OASIS score calibration. (d) SAPS II score calibration.

Figure 4: Distribution and calibration of OASIS and SAPS II severity scores for the subset of the MIMIC III
cohort who have sufficient data in the first 48 hours of their ICU stay showing that training and test score
distributions are comparable (Panels a and b).

7



Figure 5: Comparison of our model’s dynamic prediction performance over 48 hours against the static
prediction of OASIS and SAPS II (calculated at 24 hours after admission). Confidence intervals were
bootstrapped from a 10-fold cross-validation. Left panel shows AUROC curves demonstrating significantly
improved overall performance of our final model (at 48hours) compared to OASIS and SAPS II. The right
panel shows the performance of the present model over time, demonstrating a performance exceeding that
of the 24 hour OASIS and SAPS II models even within a few hours of admission and which continues to
improve even up to 48 hours.

at 48 h after admission was 0·8564 (95% CI 0·8512-0·8614, bootstrapped from 10,000 samples of a 10-fold
cross-validation). This was significantly stronger than traditional predictive models, with OASIS and SAPS
II scores achieving 0·6631 and 0·7048 respectively. Figure 5 illustrates the superior receiver operating
characteristic of our model against both OASIS and SAPS II. After 48 hours of patient data has been
accumulated, an AUROC value of 0·86 means that there is a 86% chance our model will assign a higher
probability to a randomly chosen patient destined to die rather than a randomly chosen patient destined to
live. If clinical resource allocation were based on our model rather than SAPS II, approximately 25% more
patients would be correctly prioritised.

In Figure 5, we also illustrate the performance of our model through time - that is, the predictive strength
of our model after each hour of a patient’s stay. After the initial hour of patient stays, our model has an
AUROC of 0·68, better than the overall performance of the OASIS severity score. This is significant as
OASIS relies on the entire first 24 hours of patient data and cannot make a prediction before or after this
point. The same limitation applies to SAPS II, which is outperformed after 2 hours of patient data. Indeed,
after only 12 hours, our model achieves an AUROC of over 0·7977 (95% CI 0·7940-0·8018) - performance
which is arguably strong enough to assist the actions and prioritisation of clinicians. After the initial increase
in model AUROC, the rate of improvement was found to become more incremental. Although our model
continues to accumulate useful information for mortality prediction through time, new information at later
stages in a patient’s stay had less of an impact.

DISCUSSION

We present an interpretable deep learning model using the entire multivariable patient time-series, regardless
of variable type or frequency, and without the need for variable selection or cleaning. Our method capitalises
on the flexible nature of word embeddings from NLP [17, 18] and the success of RNNs in sequence analysis
[19, 20], to greatly simplify the pre-processing required to use existing EHR structures for prediction. Our
model is dynamic and able to track predicted survival probability for optimal prediction timing as well as
providing an estimate of prediction confidence. As the vast majority of current techniques cannot make
predictions at arbitrary times [7], our time-sensitive model could help clinicians to assess overall patient
trajectory, response to therapeutic interventions, guide optimal trials of intensive care, improve patient
alerting and contribute to optimally informed shared decision-making conversations. This formulation leads
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Hour Rank Event name Value (percentile)

0-1 1/38 NBP [Diastolic] 81 mmHg (90-95%)

2/38 Respiratory Rate 33 /min (95-100%)

3/38 Respiratory Rate 26 /min (85-90%)

2-3 1/76 Temperature F 96·2 ◦F (0-5%)

2/76 Temperature C (calc) 35·7 ◦C (0-5%)

3/76 SpO2 89 % (5-10%)

12-13 1/6 Service CME

2/6 Urine Out Foley 225 ml (85-90%)

3/6 Allergy 1 No Known Drug Allergies

47-48 1/35 Ectopy Type Vent. Bigeminy

2/35 Pain Management [Route/Status #2] IV Gtt

3/35 CVP 7 mmHg (25-30%)

Figure 6: Dynamic probability of mortality after ICU admission for a patient who subsequently died during
their stay in hospital. Event rank within the each hour, event name and event value (percentile) are shown
for the first and last hour, as well as hours where there is a significant change in likelihood.

to a significant improvement in the state-of-the-art for early patient outcome prediction when validating our
method using the real-world ICU cohort in the MIMIC-III dataset [9], and therefore may also find a role
in benchmarking the quality of ICU care. Confident early prediction of low patient risk decreases the time
needed for reassurance from traditional scoring systems and could be used as a guide for transfer from the
ICU to a lower priority ward, potentially saving resources and staffing costs

Unlike [8], our model represents variables in a single large embedding space and is, to our knowledge,
the first time all clinical variables from an EHR database have been represented in the same latent space.
Therefore, our model is the first attempt to teach an “AI Clinician” [21] to relate all EHR variables on the
same basis – analogous to asking a healthcare provider to relate everything from observations to heart rate in
an unbiased way. Complex machine learning techniques (and deep learning in particular) can be opaque, and
this has been a criticism in the medical domain where decision-making must be transparent to be acceptable
to both patients and clinicians. However, our model design inherently provides a degree of insight by ranking
the relevance of clinical variables. As such, our results aid clinicians in focusing their attention across all
clinical variables, help treatment decision making and demonstrate surprisingly important factors in patient
outcome prediction.

We created a processing and embedding technique that assimilated all discrete and continuous events
in each patient’s EHR because we were interested in generalising the embedding mechanism demonstrated
in [8] to arbitrary EHR formats. Preservation of so many variable types allows our model to learn from a
far broader range of ICU data than previous models. For instance, the model now assesses nursing notes
at the same time as checking the most recent laboratory values; an experience much closer to that of a
clinician. Our model also has the capacity to relate unusual or infrequently sampled events across time -
insight that clinicians in the highly demanding setting of the ICU may struggle to appreciate. As the spread
of EHR systems proliferates, larger datasets employing models with this type of flexible embedding could
also lead to clinical and physiological insights beyond those of the current medical corpus. This superhuman
comprehension of diverse data has already been demonstrated for image classification [22, 23] and the data
dense setting provided by modern EHR systems is likely to contain similar complex insights.

The combination of dynamic, individual mortality predictions with calibrated uncertainty provides a
summary of the patient state which may be useful in automated alerting and clinician prioritisation. The
time-sensitivity means that it may be used to track patient trajectory as well as evaluate response to therapy.
The availability of ranked salient features is a step towards providing the interpretability needed to make such
systems acceptable both to patients or patient advocates and clinicians in guiding individualised care. For
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example, Figure 6 shows hourly predictions for a patient, a male of over 90 years of age on his 2nd stay in the
ICU after being discharged 2 months before, who died of congestive heart failure 65 hours after admission.
Our model made an initial prediction after one hour of patient data, predicting that the patient had a 19·2%
chance of mortality. This is already a significant deviation from the population average mortality rate of
13·2% and was based on the importance our model places on high blood pressure and high respiratory rate.
Our model later indicates the patient deteriorating to over 50% risk of death at hour 3, due to worryingly low
temperature and SpO2. Assessment of our model’s predictions at this point in time would have already shown
a very concerning trend in patient risk, potentially reinforcing clinician suspicions at the time. Subsequently,
after 12 hours, over 2 days before death occurred, our model gave the patient an 83·6% chance of death. By
the time a traditional severity score such as OASIS or SAPS II could have been used to calculate patient
mortality risk, our model had already indicated this patient was at incredibly high risk for several hours. At
the end of our prediction window the likelihood of survival was less than 10%.

Figure 6 also highlights the limitations of our model. In the 13th hour of the patient’s stay, when there
are only 6 readings taken, it is unclear why the model prioritises Service CME and Allergy 1 No Known drug

allergies. As the model is broad enough to process all clinical variables, it will also rank many superfluous
records that could affect prediction. Another limitation of the study is the inherent bias introduced when
obtaining quantiles from specific hospital cohorts. This renders our model subject to both hospital-based and
demographic-based bias. Moreover, the principle concern with maximally flexible models that can intake all
forms of input, including clinician notes, is that models will learn to extract trivial identifiers of impending
outcomes. This could include discharge notes being indicative of survival, or clinician comments on patient
outcomes being directly used for prediction. In our experiments we found events such as recording the code
status instructions for cpr, assigning consent to a next of kin, and a visitation by the priest to all be highly
indicative of mortality. By employing clearly interpretable models, such as our ranking system, a clinician
could ignore such tautologies and consider whether they have fully considered the implications of our model’s
next most important events.

We believe our model to be the first that performs no variable selection or pre-processing as well as
allowing for erroneous values. Recent work with EHR data [8, 24] has focused on scalability and streamlining
the transition between widespread data formats and model inputs. Our model goes one step further by
allowing for all types of readings to be used as inputs and assessed for any correlation with patient outcomes.
Furthermore, when employing our pipeline, there is no necessary censoring of patients during secondary
analysis of EHR data. We present a deep learning model which can generate time-sensitive mortality
probability estimates as a summary measure of patient state with calibrated confidence estimates for an
individual patient at any arbitrary time. The model is able to assimilate all the data available without the
need for cleaning. Unlike previous ICU prediction models, we treat all variables on the same basis, without
the need for feature engineering, using a single large embedding space. Even without pre-processing, we
achieve state-of-the-art performance across the cohort. Our approach is a natural way to handle the complex
structure of ICU data and provides a summary of patient state over time, as well as making the salient
features available which may be useful in guiding clinicians.
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