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Abstract
Score-based model research in the last few years
has produced state of the art generative models
by employing Gaussian denoising score-matching
(DSM). However, the Gaussian noise assumption
has several high-dimensional limitations, moti-
vating a more concrete route toward even higher
dimension PDF estimation in future. We outline
this limitation, before extending the theory to a
broader family of noising distributions—namely,
the generalised normal distribution. To theoreti-
cally ground this, we relax a key assumption in
(denoising) score matching theory, demonstrating
that distributions which are differentiable almost
everywhere permit the same objective simplifica-
tion as Gaussians. For noise vector length dis-
tributions, we demonstrate favourable concentra-
tion of measure in the high-dimensional spaces
prevalent in deep learning. In the process, we
uncover a skewed noise vector length distribution
and develop an iterative noise scaling algorithm to
consistently initialise the multiple levels of noise
in annealed Langevin dynamics. On the practi-
cal side, our use of heavy-tailed DSM leads to
improved score estimation, controllable sampling
convergence, and more balanced unconditional
generative performance for imbalanced datasets.

1. Introduction
Given a probability distribution p(x), x ∈ Rn, the score
function is defined as

s(x) = ∇x log p(x), (1)

the gradient of the log-density with respect to the input x.
The score is a vector field of the gradient at x, and gives the
direction of the maximum increase in log-density.

Score based models (SBMs) are parameterised and trained
to estimate ∇x log p(x). Unlike likelihood-based models,
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such as normalising flows (Rezende & Mohamed, 2015;
Kobyzev et al., 2020) or autoregressive models (Papamakar-
ios et al., 2017), this approach has the advantage of mod-
elling an unconstrained function that does not need to be
normalised.

By starting with the energy based model formulation

pθ(x) = e−fθ(x)/Zθ, (2)

for parameters θ ∈ Rm, with m � 1 for deep learning
models, it is clear that

sθ(x) = ∇x log pθ(x) = −∇xfθ(x)−∇x logZθ︸ ︷︷ ︸
=0

= −∇xfθ(x),

(3)
naturally removes the oft intractable partition function Zθ.

1.1. Score matching

The goal of SBMs is to fit sθ(x) := ∇x log pθ(x) to
∇x log px(x), but of course ∇x log px(x) is not available
in the first place. As such, it is necessary to assess whether
any given minimisation can avoid the tautologous use of
p(x).

A simple first attempt to minimise the Euclidean distance,
known as the Fisher divergence, across the space gives the
explicit score matching (ESM) objective

JESMp(θ) =
1

2
Ep(x)

[
||∇x log p(x)− sθ(x)||22

]
. (4)

Despite the continuing presence of p(x), a useful result is
that, following an integration by parts, JESMp (ignoring a
constant shift) simplifies to implicit score matching (ISM)

JISMp(θ) = Ep(x)

[
1

2
‖sθ(x)‖22 + tr (∇xsθ(x))

]
, (5)

where the density function of the observed data does not ap-
pear (Hyvärinen, 2005). This integration is subject to a few
weak constraints which are detailed here as they motivate a
theorem in Section 2.

#1 The PDF p(x) is differentiable.

#2 Ep(x)

[∥∥∥∥∂ log p(x)
∂x

∥∥∥∥2
]

is finite.
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#3 For any θ:

A Ep(x)

[
‖sθ(x)‖2

]
is finite.

B lim
‖x‖→∞

[p(x)sθ(x)] = 0.

In practice, discretising the expectation, JISMp is then ap-
proximated by

JISMp0(θ) =
1

N

N∑
i=1

[
1

2

∥∥∥∥sθ (x(i)
)∥∥∥∥2

2

+ tr
(
∇xsθ

(
x(i)
))]

,

(6)

for N data samples, an intuitive objective where:

• Term one minimises the scale of the score to zero, in-
ducing the presence of a local minimum or maximum.

• Term two, the trace of the Jacobian of the score, being
minimised then clearly indicates an objective forcing
local maxima at each data point.

1.2. Denoising score matching

Problematically, the trace of the Jacobian in (5) and (6)
requiresO(n) backpropagations to calculate and is therefore
computationally expensive enough to render this objective
impractical. As an example of suggested optimisations,
Song et al. (2020a) proposed sliced score matching (SSM)
which projects the vectors onto random directions (far fewer
than n times) and takes the expectation of the objective
over these directions. The sliced Fisher divergence is then
approximated by

1

2
EpνEpdata

[(
νT∇x log pθ(x) + νT∇x log pdata(x)

)2]
,

(7)

where ν is a random direction based on a given distribution
pν . However, SSM has recently been superseded by a new
form of denoising score matching (DSM), originally from
(Vincent, 2011), which avoids the Jacobian altogether.

The first step of DSM is to perturb the data x with a known
noise distribution qσ(x̃|x) (normally convolution with a
diagonal multivariate Gaussian kernel)

qσ(x) =

∫
X

qσ(x̃|x)pdata(x)dx. (8)

The key step in (Vincent, 2011), relying on the same assump-
tions in a similar integration by parts to that of (Hyvärinen,
2005), was to prove that (5) is equivalent (as an objective,
i.e. up to fixed constants) to DSM

JDSMqσ (θ) =
1

2
Eqσ(x̃|x)pdata(x)

[
‖sθ(x̃)−∇x̃ log qσ(x̃|x)‖22

]
,

(9)

with sθ∗(x) = ∇x log qσ(x) almost surely, and
∇x log qσ(x) ≈ ∇x log pdata(x) when the noise is low
enough for qσ(x) ≈ pdata(x). Crucially, perturbation of
the distribution in (9) is computationally trivial and only a
single backpropagation is required.

Taking stock, a lot has been achieved toward making likeli-
hood estimation more tractable. For the entirely generalis-
able formulation of the likelihood as an EBM: the partition
function has been discarded, the model likelihood has been
integrated out, and a tractable equivalent of an intuitive
objective was obtained. Nevertheless, important questions
remain about how a well-approximated score should be
best-used and how samples can be generated.

1.3. Langevin dynamics

The answer to the generation problem is to sample by using
score estimates to ascend the gradient for a given input. Due
to the monotonic nature of the logarithm function, itera-
tively following the direction of the largest score estimate is
equivalent to performing gradient ascent on the data distri-
bution. As such, multiple iterative optimisation algorithms
are available for use at this stage.

The procedure of choice, Langevin Monte Carlo (LMC,
(Besag, 1994)), is a Markov Chain Monte Carlo (MCMC)
method for obtaining random samples from probability dis-
tributions for which direct sampling is difficult. The goal
is to follow the gradient but add a bit of noise so as to not
get stuck at local optima, explore the entire distribution, and
sample from it.

The LMC sampling procedure for p(x), using only
∇x log p(x) and remaining uncorrected as Langevin Dy-
namics (LD), is summarised in Algorithm 1. The major
assumptions of note here are the standard choice of Gaus-
sian noise in LD, which can be replaced with heavier tailed
noise sources (Şimşekli, 2017), as well as the first-order
nature of the iteration. In the last few years, the convergence
rates of higher-order schemes of LD have been formalised
(Cheng et al., 2018; Mou et al., 2019) and their integration
with score matching looks to be an interesting avenue of
research beyond the scope of this document.

Algorithm 1 Langevin dynamics.
Input Hyperparameters of prior π(x), step size ε � 1,
step limit T , and initialised x̃0 ∼ π(x).
for t = 1 . . . T do

Sample:
zt ∼ N (0, I) x̃t = x̃t−1 + ε∇x log p (x̃t−1) +

√
2εzt

end for
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1.4. Limitations and recent improvements

Now that an end-to-end solution to sampling—score estima-
tion through DSM followed by LMC—has been established,
it is apt to consider this process’ inherent limitations:

1. The manifold hypothesis. High dimensional data tend
to lie in low dimensional manifolds, so∇x log pdata(x)
is undefined in some regions. This hypothesis is central
to the majority of NN theory and DL architectures. As
such, it is potentially both computationally wasteful
and mathematically fruitless to estimate a score along
certain of the input space’s dimensions.

2. Inaccurate score estimation in low data-density re-
gions. The reverse statement of the manifold hypoth-
esis states that data will not lie in the majority of the
input space. Therefore, vector field estimation can be
misled around low density regions where there are too
few samples to guide the correct direction of the score
vector, even if the dimension is, overall, relevant.

3. Slow mixing of Langevin Dynamics between data
modes. With disconnected distribution support, or a
mixture of two disjoint components with a weighting
coefficient π, scores cannot recover this coefficient and
are invariant towards mode weights (Song & Ermon,
2019). For instance, a mixture of Gaussians with very
different means and low variances will be difficult to
fully model due to the light tails of the Gaussian dif-
fusion in LMC—it is very unlikely that a transition
between modes will take place.

To address these issues, Song & Ermon (2019) suggested an-
nealed Langevin dynamics (ALD, see Algorithm 2). Follow-
up work then made five training technique suggestions
which allow improved scale and generation quality (Song
& Ermon, 2020). The success of ALD has been such that
recent SBMs are now on par, if not better (with heavy com-
pute), than best-in-class GANs and autoregressive models
(Song et al., 2020b; Vahdat et al., 2021).

Algorithm 2 Annealed Langevin dynamics.
Input Gaussian noise scaling factors {σ1, . . . , σk ∈
R+ s.t. σ1 > . . . > σk}, and parameters to run LD.
for i = 2 . . . k do

Run LDi with noise level σi starting from the result of LDi−1

end for

Due to the success of these improvements, research in this
area has proliferated over the past two years. As a full re-
view is beyond the scope of this work and yet to appear
in the literature, a brief summary is included here. Cri-
tiques and expansions of both discrete and continuous (see
Section A.3) DSM have been presented in (Huang et al.,

2021; Kim et al., 2021; Song et al., 2021). DSM for dis-
crete data was formally defined in (Hoogeboom et al., 2021),
and techniques for sampling with score (and higher order
(Meng et al., 2021)) estimates have experienced a renais-
sance (Jolicoeur-Martineau et al., 2021). Additionally, the
connection between SBMs and denoising diffusion proba-
bilistic models (DDPMs) has been clarified (Ho et al., 2020;
Song et al., 2020b). Finally, closely related to the next sec-
tion, is the first use of non-Gaussian noise in DDPMs in
Nachmani et al. (2021), to assess the effects of noise with
more degrees of freedom.

(a) p(x) (b) Sample paths.

Figure 1. DSM training and LD sampling. In a, p(x) is modelled
as an additive mixture of (k = 2) bivariate Gaussians with 20,000
samples. An MLP is trained to estimate the score from samples
noised by qσ(x̃|x) ∼ N (x, I). 1,000 sampled paths are evolved in
b to demonstrate the decision boundary, its asymmetry (relevant for
class imbalance), and the upper bound on approximation accuracy
due to the underlying unit noise. Full details in Figure 11.

(a) (b)

Figure 2. Multiple noise level DSM training and ALD sampling.
The setup and figures are identical to Figure 1 except that two
noise scales, σ1 = 1.0 and σ2 = 0.25, are used. Full details in
Figure 12.

2. High dimensional noising
The previous section discussed the background of denois-
ing score matching and finished with various strategies to
scale this process to higher dimensions and better sample
quality. This section will consider the weaknesses of those
scaling strategies, with a particular focus on generalising
high dimensional noise perturbations.
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2.1. Beyond Gaussian noise

According to the derivation in Vincent (2011), the choice of
Gaussian noise is simply for convenience and has the bonus
of an intuitive score

∇x̃ log qσ(x̃|x) = Σ−1(x− x̃), (10)

which corresponds to moving from noisy x̃ to clean x.

To elucidate how Gaussian DSM works in practice, in Fig-
ure 1, a 2D example is provided, demonstrating the method
converging and generating samples from a mixture of Gaus-
sians. The example considers all steps of the procedure:
noising, training, and sampling. Then, in Figure 2, the ex-
ample is extended to the multiple noise levels in DSM with
ALD. Although the improvement between the two is evi-
dent, this synthetic example will be used to highlight the
weaknesses of Gaussian DSM with ALD in Subsection 3.1.

By considering the actual constraint on the noise distri-
bution, that log qσ(x̃|x) is differentiable (Vincent, 2011),
this subsection will explore the consequences of the pivotal
Gaussian noise assumption in JDSMqσ(θ). The differen-
tiability condition encompasses a broad range of potential
distributions and gives rise to the questions: What form
could and should qσ take? How does the choice of qσ influ-
ence model learning?

2.1.1. GAUSSIAN NOISE IN HIGH DIMENSIONS

Now that intuition about the role of the noising process
in DSM has been established, it is necessary to consider
the effects of noising in higher dimensions. Deep learning
excels at minimising function approximation error in high
dimensional space (Barron, 1994). However, intuition about
high-dimensional statistics is infamously poor (Bishop et al.,
1995) and, as they have evolved far beyond low-dimensional
statistics, canonical ‘small’ DL datasets appear sparse when
considered in their full domain. In the case of images, com-
mon generative baselines range from MNIST with samples
in R784 (LeCun et al., 2010), to Flickr Faces HQ (FFHQ)
with samples in R3,145,728 (Karras et al., 2019). For time se-
ries with a discrete parameterisation, samples inhabit RT×d,
where d can be particularly high in medical datasets. More-
over, all of these high dimensions precede any considera-
tions about multimodality, where several high-dimensional
input domains (or their compressed representations) can be
fused using the flexibility of neural architectures.

For instance, consider how the squared L2 length distribu-
tion of the isotropic Gaussian vector

Y = ‖X‖22, (11)

follows either of the chi-squared distributions

Y ∼ χ2(n) = nχ2(1), (12)

which approaches a Gaussian distribution centred at n in
the limit n→∞. See Section A.1 for the derivation, Sec-
tion 2.1.4 for a full description of the moments, and Fig-
ure 15 for a visualisation of the chi-squared distribution for
increasing degrees of freedom.

2.1.2. THE PROBLEM IN HIGH-DIMENSIONAL SBMS.

As described in Section 1, the conditional DSM Gaussian
noise distribution qσ smooths around each data point x.
In the ideal scenario, the surrounding Gaussian n-spheres
would overlap slightly, filling the high-dimensional convex
hull defined by the dataset. As such, throughout the hull,
the SBM would learn to faithfully interpolate the space,
estimating gradients accurately so that they can be used in
an iterative generation procedure. However, using standard
results, it is now clear that in the high-dimensional setting of
deep learning, these n-spheres in fact approach n-annuli—
very thin shells.

This consideration immediately offers a new interpretation
of why multiple levels of noise in ALD (see Section 1.4)
were a major improvement over prior methods. Although
the original motivation in (Song & Ermon, 2019) was to
enable LD noise annealing, similar to annealed importance
sampling (Neal, 2001), this step also stacked concentric
noise annuli. Therefore, SBMs with ALD learn gradi-
ents that apply to a larger volume of the dataset interior.
Moreover, for the original ALD paper, this perspective con-
founds the performance improvement due to annealing the
Langevin dynamics with ‘filling the convex hull’. Such an
insight motivates decoupling of, and clarification around,
the effect of both approaches.

Despite the follow-up improvements to ALD (Song & Er-
mon, 2020), recognising this concentration of noise and
increasing the number of noise levels, the authors’ moti-
vation was to correctly balance coverage across regions of
different weight. This interpretation can be taken further
and permits several opportunities:

• Even with multiple levels of noise, how do these mod-
els fair when generating sparse distributions—what is
the performance-sparsity trade-off? As highlighted in
Figure 16, the Gaussian distribution has relatively light
tails compared to several reasonably well-behaved dis-
tributions that have been studied in-depth. Intuitively,
heavier tails should facilitate sampling further across
sparse domains and aid score interpolation.

• At the time of writing, noise level selection for the best
discrete ALD model is sampled linearly in log space
between two hyperparameters for the minimum and
maximum noise level. In the continuous case, recent
models have tried to learn this distribution (Kingma
et al., 2021), but the resulting approximation has not
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been theoretically explained. Clearly, refinement of
the discrete case, potentially leading to an explana-
tion in the continuous case, is a motivating theoretical
goal. Moreover, the relationships between data dimen-
sion, DSM noise distribution, and DSM noise length
distribution have not been explored. In particular, Sec-
tion A.2 addresses skewed length distributions and
general noise with a quantile matching algorithm.

• Finally, the variance of the squared length distribution
in (Song & Ermon, 2020) is incorrect. Unfortunately,
this means that the subsequent derivations (Proposition
2 and 3, corresponding to technique 3 and 4, in (Song
& Ermon, 2020)) are also invalid. The correct variance
is detailed in (25) alongside the consequent differences
for SBMs due to its new form.

As a result, it is tempting to turn toward common heavy
tailed distributions, such as those in Figure 16. Unfortu-
nately, as a first port of call, the Cauchy distribution is
notoriously difficult to manipulate, evidenced by its unde-
fined moments, and does not permit the same concentration
analysis as in Section 2.1.1 (Eicker, 1985). The same issue,
the summation of the squared RV rather than the squaring
itself, arises for the Student-t distribution because the square
of a t-distribution is an F -distribution (Fisher-Snedecor dis-
tribution (Box & Tiao, 2011)) which has an undefined MGF.

Finally, the Laplace distribution seems to be the only viable
heavy-tailed distribution for a similar concentration of mea-
sure calculation to the Gaussian noise vector. The result is
that the square of a Laplace RV follows a Weibull distri-
bution and, as the Weibull distribution is linear in its first
parameter, the squared length distribution is a Weibull dis-
tribution also. Notwithstanding the potential of this result,
it is possible to go further by considering a much broader
family of distributions that both subsumes the Gaussian
and Laplace distributions and is similarly equipped with a
tractable PDF.

2.1.3. GENERALISING TO THE GENERALISED NORMAL
(EXPONENTIAL POWER) DISTRIBUTION

The generalised normal (GN) distribution (Nadarajah, 2005),
Xi ∼ GN (µ, α, β) with µ ∈ R and α, β ∈ R+, has PDF

fX(x;µ, α, β) =
β

2αΓ(1/β)
exp

{
−
(
|x− µ|
α

)β}
,

(13)

which recovers the standard Gaussian distribution for
(α, β) =

(√
2, 2
)
, the standard Laplace distribution for

(α, β) = (1, 1), and the uniform density for β = 0. The GN
is used when the concentration of values around the mean
and the tail behaviour are of particular interest (Box & Tiao,
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(a) Log PDF.

4 2 0 2 4
x

10

5

0

5

10

x
[lo

gp
(x

)]

= 0.5
= 1.0
= 1.5
= 2.0

(0, 1/ 2)

(b) Score function.

Figure 3. The generalised normal distribution for varied β.

2011), apt for this case. The corresponding score of 1D GN
noise is

d

dx̃
[log qGN (x̃|x)] =

d

dx̃

[
−
(
|x̃− x|
α

)β]
(14)

= − β

αβ
sign(x̃− x)|x̃− x|β−1 (15)

(15) clearly indicates that the score of the generalised normal
distribution is, however, continuous but not differentiable at
zero. This contravenes the necessary assumption for DSM
which was mentioned in Section 1.2 and (Vincent, 2011).
Therefore, to use this more general family of generalised
normal distribution noise, it is necessary to weaken the the-
oretical constraints to piecewise-differentiable distributions.

Theorem 2.1. Assume that the estimated score function
sθ(x) obeys the assumptions outlined in Section 1.1, ex-
cept that sθ(x) is instead differentiable almost everywhere.
Then, the objective function for JESMp in (4) is still equiv-
alent to JISMp in (5). Proof in Appendix A.4.

This theorem establishes that the generalised normal dis-
tribution, or similar distributions such as the Laplace dis-
tribution, can be used for noising in DSM. Therefore, to
motivate its usage, further theoretical results are now de-
rived surrounding GN concentration of measure.

2.1.4. COMPARISON OF CONCENTRATION MOMENTS

Similar to the Gaussian case, considering the squared L2

length distribution Y , but deriving the distribution of Zi =
X2
i first for simplicity

FZi(z) = P (Zi ≤ z) = P
(
X2
i ≤ z

)
= P

(
|Xi| ≤

√
z
)
,

(16)

and repeating the process in Section 2.1.1 gives

fZi(z) = F ′Zi(z) =
1√
z
φGN

(√
z
)

(17)

=
1√
z

β

2Γ(1/β)
exp

{
−|
√
z|β
}
, (18)
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where φGN is the corresponding unit distribution (α, µ) =
(1, 0) and, as the square of the domain of Xi is R+, the
modulus can be ignored.

Recalling the generalised Gamma distribution (Stacy, 1962),
GG(a, d, p) with PDF

f(x; a, d, p) =
p/ad

Γ(d/p)
xd−1 exp

{
−
(x
a

)p}
, (19)

with d ∈ R and a, p ∈ R+, it becomes clear that Zi ∼
GG(a = 1, d = 1/2, p = β/2) and the sum remains. There-
fore

fY (y) =
1

n
φGG

( y
n

)
(20)

=
1

n

p

adΓ(d/p)

( y
n

)d−1

exp
{
−
( y

an

)p}
(21)

=
p

(an)dΓ(d/p)
yd−1 exp

{
−
( y

an

)p}
, (22)

shows nGG(a, d, p) = GG(na, d, p), which means

Y ∼ GG(a = n, d = 1/2, p = β/2). (23)

This derivation establishes the length distribution appropri-
ate for the generalised normal noise vector. To determine
whether such a generalisation is useful, it is relevant to
analyse how the moments of this distribution evolve with n.

For a Gaussian noise vector, the moments of ‖X‖22 =
Y ∼ χ2(n) are:

E[Y ] = n (24)
Var(Y ) = 2n (25)

Skew(Y ) =

√
8

n

n→∞−−−−→ 0 (26)

Kurtosis(Y ) =
12

n

n→∞−−−−→ 0. (27)

The main properties of interest here are:

• Variance scales linearly with dimension. This moment
dictates how thick the concentric annuli are for the
sequence of noise levels in DSM with ALD.

• Skew and kurtosis tend to zero as dimensionality in-
creases, leading to a near-Gaussian distribution in the
limit. Also, when the skew value is non-zero, any
scheme to overlap concentric annuli will be consis-
tently biased toward one side of each annulus.

On the other hand, for the generalised Gaussian noise vector,
the first two moments of ‖X‖22 = Y ∼ GG(a = n, d =

1/2, p = β/2) are:

E[Y ] = a
Γ((d+ 1)/p)

Γ(d/p)
= nC1 (28)

Var(Y ) = a2

(
Γ((d+ 2)/p)

Γ(d/p)
−
(

Γ((d+ 1)/p)

Γ(d/p)

)2
)

= n2C2,

(29)

where

C1 :=
Γ(3/β)

Γ(1/β)
(30)

C2 :=
Γ(5/β)

Γ(1/β)
−
(

Γ(3/β)

Γ(1/β)

)2

. (31)

Relative to the previous moments, it should firstly be noted
that (30) scales the mean in a nonlinear fashion. As depicted
in Figure 18(a), (30) undergoes a super-exponential decay
with respect to β. Therefore, use of low β noising strategies
will push annulus samples relatively far from the base data
point compared to Gaussian noise. It is apparent that a
trade-off has emerged, between the desire for heavy-tails
in DSM to fill high-dimensional space, and the unwieldy
resulting length distributions. This is perhaps, unsurprising,
given the renowned difficulties when working with Lévy-
like distributions (Mandelbrot & Mandelbrot, 1982).

Secondly, the property that variance scales quadratically
with dimension has surfaced. Therefore, as long as (31)
is greater than 1/n—almost a guarantee given that n �
1 and the even more aggressive exponential for low β in
Figure 18(b)—substantially thicker shells will be present.
Of course, this gain comes with the caveat that low β noise
is likely to be problematic, corresponding to score functions
with a singularity at zero (evidenced in Figure 3).

Despite the unintuitive form of the gamma functions
comprising (30) and (31), both terms simplify for β ∈
{2, 1, . . . , 1/k}, k ∈ N, to Gaussian, Laplace, and closed-
form moments respectively.

3. Results
After the theoretical groundwork of the previous section,
this section designs empirical experiments to explore and
confirm the utility of heavy-tailed denoising score matching
(HTDSM). A qualitative and quantitative assessment of the
novel insights of Section 2 is provided at multiple scales,
each lending support to the use of HTDSM in practice.

3.1. Low dimensional space

Before progressing to high-dimension DL image datasets,
it is apt to begin with an easily controlled and visualised
continuation of the 2D example given in Figures 1 and 2.1

1Code is available at github.com/jacobdeasy/heavy-tail-dsm.

https://github.com/jacobdeasy/heavy-tail-dsm


Heavy-tailed denoising score matching

As a first implementation of the HTDSM scheme described
in Section 2, Figure 4 (expanded in Figure 13) combats
the density approximation task of Figure 2 using Laplace
(β = 1) noise. Figure 13(a) illustrates the diamond,
rather than circular, noise structure of a diagonal bivari-
ate Laplace distribution. Figure 13(b) and 13(c) respectively
demonstrate that ALD training and sampling converge with
Laplace (sub-Gaussian, piece-wise differentiable) noise,
confirming Theorem 2.1. The effect of the heavier-tailed
noise when sampling is evidently present for the first half
of the noise levels in Figure 13(d), but this effect is out-
weighed by the down-scaling of ALD in the second half
of sampling. Paths in Figure 13(e) begin from any point
in the initialisation, extend across a far broader space, and
all converge. The use of sub-Gaussian sampling diffusion
is a novel step beyond standard ALD using SBMs and is
closely aligned with fractional Langevin Monte Carlo meth-
ods (Şimşekli, 2017). A positive is the removal of any kind
of decision boundary, but a negative is the slightly inaccurate
final solution. One way to solve this inaccuracy would be to
simply add another, lower noise, level of ALD. Figure 4 also
clarifies that the higher variance in shell radii, derived in
Section 2.1.4, is in fact the variance arising due to the non-
spherical nature of the high-dimensional generalised normal
distribution. For instance, in the case β = 1, Laplace noise
provides samples in an approximate hypercube around its
centre. The corners of the hypercube extend further along
the axes than the Gaussian case, sacrificing probability mass
not aligned with the coordinate system. It is noteworthy that
this hypercube is approximate and the infinite domain of
the Laplace distribution is therefore still more useful than
the fixed hypercube of the uniform distribution. Immediate
extensions are available, such as using a radial basis for
the noise distribution, similar to that used in Farquhar et al.
(2020) for Bayesian neural network parameterisation. How-
ever, this direction is beyond the scope of this work and the
Cartesian basis will continue to be used throughout.

Figure 14 also depicts how standard DSM with ALD can
suffer from mode collapse. The setup and subfigures are
identical to Figure 2, except that p(x) samples now have
an imbalance of 10:1 between modes 1 (upper right) and 2
(lower left) respectively. Particle paths in Figure 14(b) and
Figure 14(d) clearly show a preference for mode 1, even
crossing mode 2 entirely. This is arguably not a problem,
but 97.2% of particles approaching mode 1 in Figure 14(d)
does not reflect the true imbalance (> 99% is also not an
uncommon steady-state for this setup). The large scores
associated with distant particle migration, across mode 2 to
mode 1, can also be seen by the scale of the initial scores in
Figure 14(c).

In addition, Figure 5 illustrates Laplace DSM with ALD for
the class imbalance problem of Figure 14. 5(b) establishes
that Laplace noise can compensate for class imbalance. In

(a) (b)

Figure 4. Laplace DSM with ALD. The setup and figures are iden-
tical to Figure 2, except that Laplace noise is used (β = 1 in the
general formulation). a depicts the diamond, rather than circu-
lar, noise structure of a diagonal bivariate Laplace distribution. b
demonstrates that ALD sampling converges even with Laplace
(sub-Gaussian, piece-wise differentiable) diffusion, confirming
Theorem 2.1. Full details in Figure 13.

particular, 29.5% of particles finishing in mode 2 means
that HTDSM even manages to overcompensate.

(a) (b)

Figure 5. Laplace DSM with ALD. The setup and figures are identi-
cal to Figure 14, except that Laplace noise is used. b demonstrates
that Laplace noise compensates for the class imbalance. 29.5% of
particles finishing in mode 2 even manages to overcompensate.

To confirm that this trend is present for all β < 2 noise
types, Figure 6 extends this, repeating the experiment to
estimate a confidence interval. Overall, the large jumps in
sampling (similar to Lévy flights) free the sampling paths
from being dominated by the more populous mode while
preserving useful score estimates which point toward the
underrepresented local maximum of the PDF.

Another insight is offered in Table 1, where DSM and
HTDSM are used with Gaussian or Laplace diffusion. As
expected, models trained with standard DSM diverge when
Laplace diffusion is used for sampling2. Also consistent
with Figures 14 and 6, DSM with Gaussian ALD suffers
from mode collapse. Nevertheless, HTDSM can use sub-
Gaussian diffusion to overcompensate for the asymmetric
data, a trait that is valuable for realistic scenarios which
often contain class imbalances. Finally, HTDSM can be

2Diverging here refers to approaching very large values which
completely ignore the distribution modes (even if they are techni-
cally closer to one of the two).
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used with Gaussian ALD solely as a method for providing
better score estimates. This final process leads to the most
accurate estimate of the imbalance in Table 1 and suggests
that the way forward is to leverage the stability of Gaussian
ALD alongside HTDSM gradients which are likely to be
more accurate in low probability regions.
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Figure 6. Mean percentage imbalance of generated data for β ∈
[1, 2] across 10 runs of the 10:1 experiment in Figure 14. Noise
in training and sampling is sub-Gaussian. The 95% confidence
interval is bootstrapped from 10,000 resamples.

Gaussian diffusion Laplace diffusion

DSM 98.25 (97.40, 99.09) Divergent
HTDSM 87.44 (82.85, 91.50) 77.28 (66.38, 87.79)

Table 1. Mean (plus lower/upper bounds for a 95% confidence in-
terval bootstrapped from 10,000 resamples) percentage imbalance
of generated data for the 10:1 experiment in Figure 14 with Gaus-
sian or Laplace DSM or diffusion. DSM with Laplace noise at
sampling time diverges regularly due to inaccurate gradients.

The central take-aways of these synthetic experiments are:

• HTDSM is an efficacious method of estimating a dis-
tribution’s score function.

• Sub-Gaussian diffusion, causing Lévy-flight-like sam-
pling paths, can overcome class imbalances, motivating
extension to the continuous case (see Section A.3). Suf-
ficiently accurate and compensatory score estimates for
these paths can also only be achieved with HTDSM.

• HTDSM with Gaussian diffusion offers a potentially
even more general solution.

3.2. High-dimensional class imbalances

When training each SBM, multiple noise levels were used
to allow for ALD at sampling time. Each noise level adds
generalised normal distribution noise to the image, scaled

by the constant factored into the derivations in Section 2.
For an input image and its sampled noise, the generalised
normal score is calculated according to (15), and set as
the model target. The time complexity impact of sampling
GN (µ = x, α = 1, β) noise at scale is minimal, as the
sampling procedure for each dimension is simply

γ ∼ Gamma
(

shape = 1 + 1/β, rate = 2−β/2
)

(32)

δ = αγ1/β/
√

2 (33)
x̂ ∼ U(µ− δ, µ+ δ), (34)

following Choy & Walker (2003), where U denotes the
uniform distribution.

At sampling time, in-line with Song & Ermon (2019), im-
ages are initialised by a uniform distribution over the pixels,
before ALD iteration begins. ALD (see Algorithm 2), uses
the multiple noise levels σ1, . . . , σk from training time, with
a learning rate proportional to the ratio of the squared cur-
rent noised level to the squared maximum noise level. Each
noise level iterates for step limits ranging from 10 to 500,
depending on both the dataset and the value of β—the latter
due to the low absolute score values for distant noise when
β < 1.5 (see Figure 3(b)).

3.2.1. MNIST 1 VS. 8.

To extend analysis of how HTDSM mitigates class imbal-
ances in higher dimensions, Figure 7 and 8 present model
generation results for a simplified version of the MNIST
dataset. The data is limited to contain only the classes 1
and 8, which were chosen for their contrast in pixel space.
The goal of Figure 7 was to demonstrate how Gaussian
DSM SBMs perform poorly with ALD in the presence of
asymmetric class representation, by inducing an imbalance
between classes 1 and 8. However, Figure 7(a) demonstrates
mode collapse before the class ratio is even manipulated,
and is also supported by the more expected imbalance in
Figure 7(b). Gaussian DSM suffering such issues in this
minimal setting appears to contradict Song & Ermon (2019),
where the motivation for combining DL and ALD was to
overcome uneven mode weights. Moreover, it brings into
question the cause of recent impressive generative results
with SBMs, which may require the regularisation of many
classes in the data to produce more general score estimates.

To reinforce this result, the same even-class model was re-
ran to produce 100 samples3. DSM with 100 steps per level
(s/l) produced six ones with P (6) < 10−21 under a bino-
mial model, whereas HTDSM produced eighteen ones with
P (18) < 10−10, a massive relative improvement. As the
generated HTDSM images were speckled, the same experi-
ment was repeated with 1,000s/l. This revealed that more

3Models were also retrained to verify that this issue was repro-
ducible.
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sampling steps alleviates Gaussian DSM imbalance almost
completely, producing 48 ones, and for HTDSM 32 ones
were generated (well within two standard deviations of the
normal approximation to the underlying binomial distribu-
tion here). Therefore, one conclusion is that HTDSM is
beneficial for varied sampling in compute-constrained sce-
narios and that avoidance of mode collapse in the literature
may be, in part, due to intensive sampling procedures at
high noise levels.

Figure 8 demonstrates these heavier sampling results for
HTDSM. Generated digits for a HTDSM model are trained
in-line with Figure 7 and sampled with varied diffusion type
and steps per level (s/l). In Figure 8(a), speckle is observed,
whereas more sampling steps in Figure 8(b) leads to a more
even class balance. The difference between Figures 8(c)
and 8(d) confirms that sub-Gaussian diffusion can be used
in high dimensions successfully, as long as the number of
sampling steps is increased.

(a) Class ratio 1:1. (b) Class ratio 2:1.

Figure 7. Generated digits for a Gaussian DSM model trained for
20,000 steps on digits 1 and 8 from the MNIST dataset and sam-
pled with 100 steps per level (s/l) of Gaussian ALD. No digits
resembling a 1 are present for 25 samples, indicating a sampling
process which induces (a) or exacerbates (b) the class imbalance.

3.3. High-dimensional unconditional generation

Tables 2 and 3 summarise the DGM metrics attained us-
ing HTDSM on the MNIST and Fashion-MNIST datasets.
For metrics reliant upon Inception v3 (IS, FID, and KID,
see Section B.3), 10,000 samples were generated and com-
pared to the respective training dataset using the Python
torch-fidelity4 package. Also, precision, recall, den-
sity, and coverage were estimated (with the same samples)
using the Python prdc5 package with the number of nearest
neighbours, k, set to 5 (Naeem et al., 2020).

For HTDSM on MNIST with β = 1.5, precision, recall,
and coverage were found to improve over standard DSM.
However, all other metrics did not improve and Inception-

4https://github.com/toshas/torch-fidelity
5https://github.com/clovaai/generative-evaluation-prdc

(a) ALD, 100 s/l. (b) ALD, 1,000 s/l.

(c) Laplace ALD, 100 s/l. (d) Laplace ALD, 1,000 s/l.

Figure 8. Generated digits for a HTDSM model trained in-line
with Figure 7 and sampled with varied diffusion type and steps per
level (s/l). In a, speckle is observed, whereas more sampling steps
in b leads to a more even class balance. The difference between
c and d confirms that sub-Gaussian diffusion can be used in high
dimensions successfully, as long as the number of sampling steps
is increased.

based metrics are markedly worse. Although this suggests
lower perceptual quality, Figure 9 seems to refute this. In
particular, Figure 9(b) depicts Gaussian ALD failing to
generate a single digit similar to a one, and the probability of
the seventeen zeros occurring in the real dataset is less than
10−7, so problems persist. In Table 3, β = 1.5 dominates
the majority of the metrics, demonstrating that HTDSM
is advantageous for certain datasets. Overall, β < 2 is
a promising direction for future research and larger-scale
experiments, but β = 1.0 suffered from convergence issues
at scale. It is also possible to explore the effects of light-
tailed DSM by setting β = 2.5. As this corresponds to
estimating a score function which is very large for high
noise (see Figure 3(b) for intuition), diffusion convergence
was often found to be too quick, resulting in cartoon-like
final images with strong features and no subtleties.

4. Summary and outlook
4.1. Summary

This paper has provided a thorough expansion of the theory
behind discrete-level denoising score matching for score-
based models. An in-depth discussion of SBM research was

https://github.com/toshas/torch-fidelity
https://github.com/clovaai/generative-evaluation-prdc
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(a) β = 1.5. (b) β = 2.0. (c) β = 2.5

Figure 9. Unconditional samples from a model trained with
HTDSM, and sampled from using Gaussian ALD, for different
values of β on the MNIST dataset.

(a) β = 1.5. (b) β = 2.0. (c) β = 2.5

Figure 10. Unconditional samples from a model trained with
HTDSM, and sampled from using Gaussian ALD, for different
values of β on the Fashion-MNIST dataset.

provided in Section 1, leading up to very recent progress.
This foothold was then used as the basis for novel theoreti-
cal expansion of learning with DSM to heavy-tailed DSM,
noising and denoising with the family of generalised normal
distributions. Insight into the undesirable n-dimensional
annuli in Gaussian DSM, as well as an understanding of
the generalised normal score function for β < 2, motivated
the use of heavier tails. GN noise was then found to con-
centrate in a skewed distribution which prompted a general
algorithm to choose a noise scaling sequence in Section A.2.

Examples in low and high dimensions demonstrated the
propensity of ALD with Gaussian DSM to suffer from mode
collapse—a phenomenon easily exacerbated by class imbal-
ances. The thorough 2D example, explored in Section 3.1,
outlined differences at both training and sampling time for
DSM and HTDSM. The latter was shown to be a tenable
alternative method of estimating a distribution’s score func-
tion. Experiments suggested that heavy-tailed noise can
always be scaled down to dampen sampling with jumps,
whereas limitations such as class imbalances are inherent

to the data. HTDSM with Gaussian diffusion seems to
offer the most general method of learning and sampling,
balancing better gradients in low probability regions with
well-behaved diffusion.

Despite stability issues in the underlying implementation,
when scaling to higher dimension datasets, HTDSM con-
tinued to offer promising results. In particular, 1 < β < 2
appears to be a relatively stable type of GN noise which
potentially offers improved image generation according to
a range of metrics in Section 3.3. Moreover, sub-Gaussian
diffusion, causing Lévy-flight-like sampling paths, can also
overcome class imbalances, motivating extension to the con-
tinuous case (see Section A.3), while sufficiently accurate
and compensatory score estimates for these paths can only
be achieved with HTDSM.

4.2. Outlook

Of particular note for future research is the shape of the
high-dimensional heavy-tailed noise in Figure 4(a). As
mentioned in Section 3.1, the use of a radial basis for the
noise distribution, similar to that used in Farquhar et al.
(2020) for Bayesian neural network parameterisation, offers
a more natural approach to noising. Alternatively, in the case
of highly axis-aligned data, it is possible to consider heavy
tails extending along the basis axes. This approach has
further merit after projecting data onto its most influential
principal components, or could be used after mapping the
data to any more natural underlying geometry with axis-
alignment.

Once the stability issues of Section 3.3 are resolved, several
practical steps can also be taken beyond the empirical evi-
dence of this work. The more general method for initialising
noise levels from Section A.2 can be explored in practice.
Secondly, currently inconclusive results on CIFAR10 can
be expanded to properly compare Inception distances across
training methods because their use on MNIST and Fashion-
MNIST is relatively unusual and debatable (although extant
in the literature). Finally, the experiments of Section 3 can
be scaled up to much larger image datasets such as CelebA,
FFHQ, and beyond.

As discussed in Section A.3, the continuous extension of
HTDSM has several expected properties which remain an
active area of research following this work. The main theo-
retical goal is to describe how sub-Gaussian diffusion can be
reversed by another (potentially different) diffusion. To do
this, it is necessary to investigate the general, non-Brownian,
form of the Kolmogorov backward equations, in an analysis
beyond that of Song et al. (2020b) and this paper. As well
as the suggestions made in Section A.3, it is also of note
that this line of work has rich potential links with fractional
Brownian motion (Lévy, 1953) and the fractional Fokker-
Planck equation (Metzler et al., 1999).
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β = 1.0 β = 1.5 β = 2.0 β = 2.5

Precision ↑ 0.0 0.919 0.912 0.898
Recall ↑ 1.0 0.929 0.936 0.936
Density ↑ 0.0 0.906 0.867 0.868
Coverage ↑ 0.0 0.892 0.780 0.661

IS ↑ 1.303± 0.006 1.942± 0.017 2.037± 0.037 1.922± 0.030
KID ↓ 0.569± 0.003 0.075± 0.002 0.016± 0.002 0.032± 0.002
FID ↓ 375.251 54.611 19.399 31.847

Table 2. DGM metrics for unconditional samples from a model trained with HTDSM, and sampled from using Gaussian ALD, for different
values of β on the MNIST dataset. Arrows indicate whether higher (↑) or lower (↓) metric values are better.

β = 1.0 β = 1.5 β = 2.0 β = 2.5

Precision ↑ 0.0 0.905 0.925 0.953
Recall ↑ 1.0 0.755 0.747 0.721
Density ↑ 0.0 1.323 1.551 1.878
Coverage ↑ 0.0 0.840 0.692 0.567

IS ↑ 1.303± 0.006 4.108± 0.102 3.585± 0.085 3.170± 0.074
KID ↓ 0.569± 0.003 0.022± 0.001 0.026± 0.001 0.042± 0.002
FID ↓ 375.251 32.990 41.661 63.039

Table 3. DGM metrics for unconditional samples from a model trained with HTDSM, and sampled from using Gaussian ALD, for different
values of β on the Fashion-MNIST dataset.

References
Anderson, B. D. Reverse-time diffusion equation models. Stochastic Processes and their Applications, 12(3):313–326,

1982.

Barron, A. R. Approximation and estimation bounds for artificial neural networks. Machine learning, 14(1):115–133, 1994.

Besag, J. Comments on “representations of knowledge in complex systems” by u. grenander and mi miller. J. Roy. Statist.
Soc. Ser. B, 56:591–592, 1994.
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A. Derivations
A.1. Unintuitive high-dimensional statistics

To demonstrate unintuitive statistical behaviour in high-dimensional space, consider two classic examples:

• For an iid random vector X = [X1, . . . , Xn]T with Xi ∼ U(a, b), the majority of probability mass resides in the
corners of the hypercube for high n.

• For an iid random vector X = [X1, . . . , Xn]T with Xi ∼ N (µ, σ), the probability mass concentrates in a thin annulus
(shell).

Both of these phenomena are instances of the concentration of measure—the principle that a random variable that depends
in a Lipschitz way on many independent variables is essentially constant (Talagrand, 1996). As the latter spherical case
motivates this work, it is now explored in full.

Consider the squared L2 length distribution of the isotropic Gaussian vector

Y = ‖X‖22, (35)

which, by independence, gives

Y =

n∑
i=1

X2
i = nX2

i . (36)

Changing random variables

FY (y) = P (Y ≤ y) (37)

= P (nX2
i ≤ y) (38)

= P
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√
y

n

)
(39)

= Φ
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n

)
, (40)

where Φ is the Gaussian CDF, and differentiating gives the PDF of Y
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where φ is the Gaussian PDF. Rewriting this expression and using
√
π = Γ(1/2)

fY (y) =
1

√
π
√

2n
y−

1
2 exp

{
− y

2n

}
(44)

=
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Γ(1/2)(2n)
1
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1
2−1 exp

{
− y

2n

}
, (45)

recovers the gamma distribution PDF

W ∼ Gamma(k, θ) =⇒ f(w; k, θ) =
1

Γ(k)θk
wk−1e−

k
θ , (46)
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and demonstrates that Y is distributed as either of

Y ∼ Gamma
(
k =

1

2
, θ = 2n

)
= nGamma

(
1

2
, 2

)
, (47)

and therefore follows either of the chi-squared distributions

Y ∼ χ2(n) = nχ2(1), (48)

which approaches a Gaussian distribution centred at n in the limit n→∞. See Section 2.1.4 for a full description of the
moments and Figure 15 for a visualisation of the chi-squared distribution for increasing degrees of freedom.

A.2. Scale parameter sequences for arbitrary noise distributions

It is now apparent that the generalised normal distribution can be used for denoising score matching, leading to thicker
concentric annuli. However, the non-zero skew in (26), representing the asymmetric length distribution for low n, cannot
necessarily be ignored. This asymmetry implies that the spacing of noise levels using variance in (Song & Ermon, 2020), is
inaccurate.

In particular, the probability mass in the left/right tail of one noise level annulus will be larger than the probability mass in
the right/left tail, respectively, of the adjacent annulus. In practical terms, this means overly-dense concentric noise levels
in ALD. Although the time needed to sample each noise-level per training iteration will not be affected, this will increase
overall training time, sampling (generation) time, and render some sampling steps redundant. As the same problem extends
to the generalised noise characterised in this paper, it is vital to examine the skew of the length scale distribution from (23).

To begin, note the rth raw moment of Y ∼ GG(a, d, p) is

E [Y r] = ar
Γ((d+ r)/p)

Γ(d/p)
, (49)

implying that, for ‖X‖22 = Y ∼ GG(a = n, d = 1/2, p = β/2)

E
[
Y 3
]

= n3 Γ(7/β)

Γ(1/β)
. (50)

Then, using the 3rd central moment expansion for skew

Skew(Y ) = E

[(
Y − µ
σ

)3
]

(51)

=
1

σ3

(
E
[
Y 3
]
− 3µE

[
Y 2
]

+ 3µ2E[Y ]− µ3
)

(52)

=
1

σ3

(
E
[
Y 3
]
− 3µσ2 − µ3

)
(53)

=
1

n3C
3
2
2

{
n3 Γ(7/β)

Γ(1/β)
− 3nC1n

2C2 − n3C3
1

}
(54)

=
1

C
3
2
2

{
Γ(7/β)

Γ(1/β)
− 3C1C2 − C3

1

}
, (55)

where C1 and C2 are defined as in (30) and (31) respectively. It is interesting to note that this skew expression is constant
with respect to dimension.

The tangible Laplace noising, β = 1, example can now be exemplified, as in this case

C1 =
Γ(3)

Γ(1)
= 2 (56)

C2 =
Γ(5)

Γ(1)
−
(

Γ(3)

Γ(1)

)2

= 20, (57)
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and it is clear that

Skew(Y ;β = 1) = 20−3/2
(
720− 3× 2× 20− 23

)
(58)

= 74/
√

5
3

(59)
≈ 6.19, (60)

so the resulting distribution is very positively skewed.

Despite the disappointing prospects of this result, the potential for large asymmetric annulus overlap, it also motivates a
better understanding of the general case. How can concentric annuli be constructed with equal overlapping probability mass?

To motivate the general algorithm, assess the case where the generalised normal noise is scaled by an arbitrary noise level σi.

Xi/σi ∼ GN (µ = 0, α = 1, β) =⇒ Xi ∼ GN (0, σi, β), (61)

it is, therefore, true that for GN noise vector X

‖X‖22 = Y ∼ GG
(
nσ2

i , 1/2, β/2
)
. (62)

In an ascending sequence of noise where the goal is to calculate σi+1 from σi with a given probability mass overlap, the
quantile function of the length distribution must then be used by inverting the corresponding CDF. Here, the CDF is

FGG(x; a, d, p) =
γ (d/p, (x/a)p)

Γ(d/p)
, (63)

where γ(·) is the lower incomplete gamma function

γ(s, x) =

∫ x

0

ts−1e−tdt. (64)

Although (63) appears difficult to invert, due to the inverse of composite functions, the quantile function for quantile q
follows as

F−1
GG (q; a, d, p) = a

[
G−1(q)

]1/p
, (65)

where

G(x) = FGamma (x;α′ = d/p, β′ = 1) =
γ(α′, β′x)

Γ(α′)
(66)

=
γ(d/p, x)

Γ(d/p)
, (67)

a scaled Gamma distribution CDF (Greek letters here are for the standard Gamma distribution), and the form
γ(c1, c2x)/Γ(c1), c1, c2 ∈ R+, is known as the regularised gamma function.

Finally, substituting (67) into (65), gives

F−1
GG (q; a, d, p) = a

([
γ(d/p, q)

Γ(d/p)

]−1
)1/p

, (68)

before substituting (62) as well provides

F−1
Y (q) = nσ2

i

([
γ(1/β, q)

Γ(1/β)

]−1
)2/β

. (69)

After these steps, for an example overlap of 5% of probability mass, it is now possible to say

qi,0.95 = nσ2
i

([
γ(1/β, 0.95)

Γ(1/β)

]−1
)2/β

, (70)
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is the upper quantile for σi. Crucially, this expression can be inverted to obtain σi+1 by setting the next lower bound equal
to the current upper bound, qi+1,0.05 = qi,0.95 and inverting

σi+1 =

√
qi,0.95

n

([
γ(1/β, 0.05)

Γ(1/β)

]−1
)−1/β

. (71)

These last two equations outline a general procedure for consecutive noise levels with equal distribution overlap, detailed fully
in Algorithm 3. Of practical significance is the Python function scipy.special.gammaincinv which numerically
estimates the troublesome inverse regularised gamma function to arbitrary precision (Gil et al., 2012).

Algorithm 3 Scale parameter sequence generation
Input Fixed hyperparameters of piecewise log-differentiable noise distribution, non-overlapping distribution proportion
δ ∈ (0, 1), small initial noise level σ1 > 0, and large final noise level σmax.
Initialise i = 1, qli = 0, and qui = 0.
while qui < σmax do

Calculate upper quantile qui = Qlength
(
σi,

1+δ
2

)
of nD length-scale distribution

Calculate scaling needed to equate to lower quantile qli+1 = qui
σi+1 = Q−1

length

(
σi,

1−δ
2

)
i = i+ 1

end while

A.3. Continuous extension to stochastic differential equations

Given the success of multiple noise scales in Gaussian ALD, recent SBM continuations have considered infinitely many
noise levels, such that the perturbed data distributions evolve according to a stochastic differential equation (SDE). The goal
is to construct a diffusion process {x(t)}Tt=0, t ∈ [0, T ], such that x(0) ∼ p0 is the dataset of i.i.d. samples, and x(T ) ∼ pT
is the prior distribution, with a tractable form to generate samples efficiently. This diffusion process can be modelled as the
solution to an Itô SDE6

dx = f(x, t)dt+ g(t)dw, (72)

where w is the standard Wiener process (Brownian motion), f(·, t) : Rn → Rn is a vector-valued function called the
drift coefficient of x(t), and g(·) : R → R is a scalar function known as the diffusion coefficient of x(t). Here, the
diffusion coefficient is assumed to be a scalar (instead of a d× d matrix) and does not depend on x. The SDE has a unique
strong solution as long as the coefficients are globally lipschitz in both state and time (Øksendal, 2003). Henceforth, the
probability density of x(t) is denoted by pt(x), and pst(x(t)|x(s)) denotes the transition kernel from x(s) to x(t), where
0 ≤ s < t ≤ T . Typically, pT is an unstructured prior distribution that contains no information about p0.

It is possible to start from samples of x(T ) ∼ pT and reverse the process to obtain samples from x(0) ∼ p0. The main
result in Anderson (1982) states that the reverse of a diffusion process is a also a diffusion process running backwards in
time and given by the reverse-time SDE

dx =
[
f(x, t)− g(t)2∇x log pt(x)

]
dt+ g(t)dw̄, (73)

where w̄ is a reverse-time Wiener process and∇x log pt(x) is estimated by

θ∗ = arg min
θ

Et
{
λ(t)Ex(0)Ex(t)|x(0)

[
‖sθ(x(t), t)−∇x(t) log p0t(x(t)|x(0))‖22

]}
, (74)

for λ : [0, T ] → R+ a positive weighting function, t ∼ U(0, T ), x(0) ∼ p0(x), and x(t) ∼ p0t(x(t)|x(0)). The overall
process was given the general name score matching Langevin dynamics (SMLD) in Song et al. (2020b).

When using N noise scales, each perturbation kernel pσi(x|x0) of SMLD can be derived from the Markov chain

xi = xi−1 +
√
σ2
i − σ2

i−1zi−1, (75)

6A full description of the methods for calculus on stochastic processes, the foremost being Itô and Stratonovich calculus, can be found
in (Särkkä & Solin, 2019).



Heavy-tailed denoising score matching

where i = 1, . . . , N and zi−1 ∼ N (0, I), x0 ∼ pdata, and σ0 = 0 is used to simplify notation. Whereas Song et al. (2020b)
proceed with Gaussian noise, the continuation with sub-Gaussian noise is now assessed.

To begin, let the elements of li−1 follow a sub-Gaussian distribution. Then let x(i/N) = xi, σ(i/N) = σi, and
l(i/N) = li ∀i. With ∆t = 1/N , it is then possible to write

x(t+ ∆t) = x(t) +
√
σ2(t+ ∆t)− σ2(t) l(t) (76)

≈ x(t) +

√
d [σ2(t)]

dt
∆t l(t), (77)

where the approximate equality holds when ∆t� 1. In the limit ∆t→ 0, this converges to

dx =

√
d [σ2(t)]

dt
d`(t), (78)

where `(t) is a Lévy process, rather than the Wiener process w(t) of Song et al. (2020b) which can be solved in closed-form
as an affine Brownian motion SDE.

The addition of ` to the more formal version of the diffusion process in (72) gives

x(t) =

∫ t

0

f(x, s)ds+

∫ t

0

g(s)d`, (79)

where the latter term can be interpreted as

lim
∆t→0

[∑
i

g(ti)(`(ti + ∆t)− l(ti))

]
. (80)

The sum formulation makes it clear that, for any infinitely divisible distribution7 which sums to itself (e.g. Gaussian, Laplace,
and the previously discarded Cauchy), the final distribution will be in the same family.

Therefore, it is expected that the solution to (78) describes a process which would diffuse to the underlying stable (infinitely
divisible) distribution. In the context of SMLD, this means that the prior pT (x) need not be Gaussian and can be heavy
tailed.

Unfortunately, to reverse the diffusion, it is necessary to investigate the general, non-Brownian, form of the Kolmogorov
backward equations, in an analysis beyond that of Song et al. (2020b) and this paper. Instead, several practical remarks are
made to finish the theory of this work.

Firstly, it is of note that the generalised normal distribution considered in this chapter is infinitely divisible for β ∈ (0, 1]∪{2}
(Dytso et al., 2018). This result is interesting because the analysis in Section 2.1.4 suggests that β < 1 suffers from explosive
and unwieldy length distribution moment coefficients, yet this region may be of theoretical intrigue for continuous HTDSM.
Secondly, there exist several connections between Brownian motion and heavier-tailed diffusion through subordination—
letting time evolve according to a stochastic process within another stochastic process. The prime examples of this are
variance gamma (VG) processes, which can be written as a Brownian motion W (t) with drift θt, subject to a random time
change that follows a gamma process Γ(t; 1, ν)

XV G(t;σ, ν, θ) = θΓ(t; 1, ν) + σW (Γ(t; 1, ν)), (81)

where σ is a scale parameter and ν controls the time dilation. In particular, when ν = 1, a VG process is equivalent to
the continuous version of the β = 1 GN noise considered in this chapter. Future work may be able to use the backward
Kolmogorov equation on the time-dilated Wiener process to form an ordinary differential equation describing the reverse
evolution from a heavy-tailed prior to the data distribution.

7F is infinitely divisible if ∀n ∈ N, ∃ n i.i.d. RVs s.t.
n∑
i=1

Xi = S and S has the same distribution as F .
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A.4. Proof of Theorem 2.1

Proof. Expanding (4) gives

JESMp(θ) =

∫
x∈Rn

p(x)

1

2
‖∇x log p(x)‖22︸ ︷︷ ︸

¬

+
1

2
‖sθ(x)‖22︸ ︷︷ ︸

­

−∇x log p(x)T sθ(x)︸ ︷︷ ︸
®

 dx, (82)

where ¬ can be ignored as it is constant, with no dependency on θ. For the second term, expand

­ =

∫
x∈Rn

p(x)

n∑
i=1

(sθ(x)i)
2dx, (83)

where sθ(x)i is the ith component of the partial derivatives composing sθ(x), and let

sθ(x)i =
∑
j

sθ(x)i,j , (84)

where j indexes a countable sequence of intervals partitioning the real line (except for points of zero measure). Also let each
sθ(x)i,j be differentiable inside its corresponding interval and zero outside, permitting the derivation of

∫
x∈Rn

p(x)

n∑
i=1

(sθ(x)i)
2dx =

n∑
i=1

∫
x∈Rn

p(x)

∑
j

sθ(x)i,j

2

dx (85)

=

n∑
i=1

∫
x∈Rn

p(x)
∑
j

(sθ(x)i,j)
2
dx (86)

=

∫
x∈Rn

p(x)

n∑
i=1

(sθ(x)i)
2
dx (87)

=

∫
x∈Rn

p(x)‖sθ(x)‖22dx, (88)

the first term of (5), despite the differentiable almost everywhere formulation. This step of the proof simply shows that when
integrating, the square of the sum of piecewise non-zero functions is equal to the sum of their squares.

® remains, and the proof will be complete if a differentiable almost everywhere equivalent of Lemma 4 in (Hyvärinen,
2005) establishes a multivariate version of∫

p(x)(log p)′f(x)dx =

∫
p(x)

p′(x)

p(x)
f(x)dx =

∫
p′(x)f(x)dx =

∫
p(x)f ′(x)dx. (89)

Proposition A.1. For i = 1, without loss of generality (WLOG)

lim
a→∞, b→−∞

[f(a, x2, . . . , xn)g(a, x2, . . . , xn)− f(b, x2, . . . , xn)g(b, x2, . . . , xn)]

=

∫ ∞
−∞

f(x)
∂g(x)

∂x1
dx1 +

∫ ∞
−∞

g(x)
∂f(x)

∂x1
dx1, (90)

assuming that f is differentiable and g is differentiable almost everywhere.

Proof. WLOG break g(x) into piecewise differentiable and non-zero functions along the first dimension, g(x) =
∑
j

gj(x),

defined in the interval Ij and zero elsewhere. Then

∂f(x)g(x)

∂x1
= f(x)

∂g(x)

∂x1
+ g(x)

∂f(x)

∂x1
(91)

= f(x)
∂

∂x1

∑
j

gj(x)

+
∑
j

gj(x)
∂f(x)

∂x1
, (92)
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where all variables except x1 can be fixed. Then, integrating over x1 ∈ R,

[f(x)g(x)]∞−∞ =

∫ ∞
−∞

f(x)
∑
j

∂gj(x)

∂x1
dx1 +

∑
j

∫
Ij

gj(x)
∂f(x)

∂x1
dx1 (93)

=

∫ ∞
−∞

f(x)
∂g(x)

∂x1
dx1 +

∫ ∞
−∞

g(x)
∂f(x)

∂x1
dx1, (94)

where the first term arises by construction and the second arises via a telescoping sum.

This proposition allows for an equivalent to the final step in (Hyvärinen, 2005)

−
∫
∂px(x)

∂x1
sθ(x)dx = −

∫ [∫
∂px(x)

x1
sθ(x)dx1

]
d(x2, . . . , xn)

= −
∫ [

lim
a→∞,b→−∞

[px(a, x2 . . . , xn)sθ(a, x2 . . . , xn)

− px(b, x2 . . . , xn)sθ(b, x2 . . . , xn)]

−
∫
sθ(x)

∂x1
px(x)dx1

]
d(x2, . . . , xn).

The choice of i = 1 is arbitrary and the limit is zero by assumption, therefore proving

−
∫ ∞
−∞

pX(x)
∂ log pX(x)

∂xi
sθ(x)idxi =

∫
∂sθ(x)i
∂xi

px(x)dxi, (95)

returns the ith component ®, which is summed to form the trace.
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B. Extended results
B.1. Extended 2D example

(a) (b)

(c) (d)

(e) (f)

Figure 11. DSM training and LD sampling. In a, p(x) is modelled as an additive mixture of (k = 2) bivariate Gaussians with 10,000
samples per mode. A depth 3 MLP (2 → 16 → 16 → 2, intermediate activations ReLU, batch size 256) is trained to estimate the
score from samples noised by qσ(x̃|x) ∼ N (x, I). All training noise samples are shown as green in b and the training convergence is
depicted in c. Then, in d, starting from x̂0 ∼ U(−6, 6)×U(−6, 6), 10 sampled particles are evolved to convergence using 1,000 steps of
Langevin Dynamics with step size 0.1 and matching noise scale. The score estimates used during sampling are presented in e. Finally, the
same sampling is repeated in f for 1,000 particles to demonstrate the decision boundary, its asymmetry (relevant for class imbalance), and
the upper bound on approximation accuracy due to the underlying unit noise.
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(a) (b)

(c) (d)

Figure 12. Multiple noise level DSM training and ALD sampling. The setup and figures are identical to Figure 11 except that two noise
scales, σ1 = 1.0 and σ2 = 0.25, are used in training and sampling. The sequential use of decreasing noise levels in sampling can be
seen in c. It is evident that ALD drastically improves the final distribution estimate due to the decrease in score estimate scale. It is
also relevant to subsequent class imbalance problems that the sampling procedure is slightly asymmetric. For all models trained, class
asymmetry is consistent across sampling runs, but not across DSM retraining, so is an artefact of the model.
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(a) (b)

(c) (d)

(e)

Figure 13. Laplace DSM with ALD. The setup and figures are identical to Figure 12, except that Laplace noise is used (β = 1 in the
general formulation). a depicts the diamond, rather than circular, noise structure of a diagonal bivariate Laplace distribution. b and c
respectively demonstrate that ALD training and sampling converge even with Laplace (sub-Gaussian, piece-wise differentiable) diffusion,
confirming Theorem 2.1.
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(a) (b)

(c) (d)

Figure 14. DSM with ALD mode collapse. The setup and figures are identical to Figure 12, except that p(x) samples now have an
imbalance of 10:1 between modes 1 (upper right) and 2 (lower left) respectively.
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B.2. Experimental setup

For benchmark image datasets, the experimental setup is described for reproducibility. Different neural network architectures
were used for different datasets, with respective sizes positively correlated. For MNIST, Fashion-MNIST, and CIFAR10
(28× 28× 1 or 32× 32× 3), the ResNet architecture (He et al., 2016) from Song & Ermon (2020) is used in-line with the
literature. In the case of CIFAR10, one convolutional layer is added during spatial down and up-sampling to reflect the more
complex data. Then, for any larger datasets, experiments also follow in-line with the literature, but are limited by lower
levels of compute. NN architecture specifics and further training information are summarised in Appendix B of Song &
Ermon (2020).

B.3. DGM metrics.

Justification of metrics providing a reasonable and consistent evaluation of images synthesised by generative models is
far from a solved problem. Current popular metrics often make use of the final or penultimate layer activations of a
heavily-trained convolutional network, such as the Inception v3 model of Szegedy et al. (2015). Despite obvious bias toward
generative models trained on similar datasets and in similar manners, as well as the plethora of more performant models
since Inception v3 was trained in 2015, these metrics persist, should be used for comparison with the literature, and are now
described.

When comparing generated samples to one another, the Inception score (Salimans et al., 2016)

IS = exp(Ex∼G [KL(p(y|x) ‖ p(y))]), (96)

intuitively rewards low entropy classification of generated samples (x ∼ G), as well as variation. Alternatively, the popular
Fréchet inception distance (FID, (Heusel et al., 2017)) compares Inception v3 activation statistics between generated samples
and the samples used to train the generative model, requiring thousands of new samples at evaluation time.

FID = ‖µR − µG‖22 + tr
(

ΣR + ΣG − 2(ΣRΣG)1/2
)
, (97)

where these values are activation statistics andR refers to the real dataset. The FID approach was taken further by kernel
inception distance (KID, (Bińkowski et al., 2018))

k(x1,x2) =
(
xT1 x2/n+ 1

)3
(98)

K(x1,x2) = k(φ I-v3(x1), φ I-v3(x2)), (99)

where φ I-v3(·) maps to an nD Inception v3 layer, the cubic exponent accounts for skew, crucially no parametric form for the
distribution is assumed, and an average over all real-fake pairs is taken.

An alternative approach to sample quality assessment is to directly calculate distribution overlap. In Sajjadi et al. (2018), the
authors used local n-balls to form high-dimensional equivalents of precision and recall, avoiding pathological examples
of models with equal FID but visually juxtaposed sample quality. This idea was later extended to the more localised and
precise density and coverage metrics of Naeem et al. (2020), where neighbourhoods are instead built from the k nearest
neighbours. The mathematical definitions of these concepts can be found in Naeem et al. (2020).
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B.4. Additional figures
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Figure 15. The chi-squared distribution for different degrees of freedom (DoF).
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Figure 16. Comparison of the Gaussian distribution and common heavy tailed distributions.
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Figure 17. Γ(x) in the relevant range for generalised normal noise, x ∈ [0.1, 5].
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(a) Mean scaling factor from (30).
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(b) Variance scaling factor from (31).

Figure 18. Scaling factor trends against β.


