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What is Reinforcement Learning?

Area of machine learning concerned with how agents decide
which actions to take in an environment to maximise
cumulative reward.

Actions and environment are formulated as a Markov decision
process (MDP).

No use of correct input/output pairs like supervised learning.

Trade-off must be struck between exploring the environment
and possible decisions vs. exploiting accumulated knowledge.
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Motivating Visualisation of RL

Understanding how the model work, insights into scene-action
associations in the brain.

Identification of strategies and sub-strategies.

Debugging of what is wrong in faulty agents.

Explaining the decision making process to the general public.
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Traditional Reinforcement Learning

Formulated as a MDP with set of states S and actions A:
o P,(s,s’) prob. of transitioning state s to s’ under action a.
e Ry(s,s’) immediate reward after transition from s to s’ by a.

Agent's action selection modeled by a map known as a policy:
m:SxA—10,1], m(a|s) = P(ar = a|s; = s)

For MDPs, the Bellman equation is a recursion for expected
rewards by taking actions found by policy :

V™ (s) = R(s,7(s)) + 7> P(s'|s, w(s))V(s").
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Q-Learning

e @-function to assess quality of state-action pair
Q:SxA—=R.

e At each time step t, agent selects action a;, observes reward
r+ and enters a new state Syy1.

e Uses a value iteration update to incorporate a weighted
average of old and new value information:

Q" (styar) < (L — a)Q(st, ar) + afre + max Q(st+1,a))
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Extension to Deep Q-Learning

Use a deep convolutional neural network to approximate the
optimal action-value function:

Q*(s,a) = mﬁxE[rt + yrea1 + 72rt+2 + ...|st =s,ar = a, 7.
Q-learning update at iteration / uses loss function:
/ / — 2
Li(0;) = IE(s,a,r,s’)rvU(D) (r +y m;:lx Q(s';a ;9,' ) — Q(s, a, ;ei)>

Use backpropagation of error to update Q-function.
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Deep Q-Network Architecture
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: DeepMind diagram.
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Convolutions
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Figure: A single, 3-channel convolutional kernel in action.
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Convolutional Architecture
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Figure: A more detailed look at the architecture.
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Results of Training

u
s
2
| N
g i
H i
e H
H i
e &t
.
2
2
o
5 % o T wo R S T TR R Y

7 100 1.
Training Epochs Training Epochs

(a) Breakout. (b) Space Invaders.
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(c) Stargunner. (d) Stargunner v2.

Figure: Training curves tracking the agents average score. One training
epoch corresponds to 1,000,000 Atari frames.
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Score (30 Game Avg.)
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Basic Approach: Knocking Out kernels

Single Kernel Knockout
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Convolutional Kernel Index
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Internal Scene Representation

15t Layer Scene Representations
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Deeper Internal Scene Representation
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Feature Visualisation

e Use tools from image
classification on visual RL
networks.

e Is visualising an action
different to visualising an
image class?

e Activation maximisation
uses gradient ascent to
adjust input according to
gradient of deep layers.

Figure: Cheese burger and tennis

ball features from DeepDream.
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Iteration=0

Figure: Progression of activation maximisation.
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Figure: 2nd Layer Feature

Figure: 'RIGHT’ Action Feature
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Saliency Maps

e Occlude image sections to discern which features matter.
e Can use perturbation or gradient based methods.

True Label: Afghan Hound
P W e
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Saliency via Local Blurring

Figure: ¢(If7 Ia.j) = If © (]‘ - M(I*J)) + A(/f7UA) © M(’a./)
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Breakout Strong Policy

Figure: Agent switches focus between observations.
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Space Invaders Strong Policy

Figure: Focusing on hiding and dodging.

N
N

S



Visualisation

O000@0

Learning Policies

Figure: Saliency maps at 5 different stages of training. From left to right:
an untrained network, a network after 3125 parameter updates, and
networks after one third, two thirds and complete training.
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Learning Policies

Figure: Improving agent focus and playstyle.
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Semi Aggregated Markov Decision Process

e Semi MDPs divide the agents actions into options (skills).

e Each skill has an independent policy w7, set of states

initiating the skill /7, and set of termination probabilities 37.

o Aggregated MDPs segment the state space using spatial
abstractions.
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Aggregation

Use penultimate layer as compressed representation of the
input stats.

120,000 inputs and penultimate layer activations were
recorded.

120,000 x 512 matrix reduced to 120,000 x 50 by principal
component analysis (PCA):

e 99% of variance in Breakout states retained.
e 05% of variance in Space Invaders states retained.

t-distributed Stochastic Neighbour Embedding (t-SNE) used
to reduce dimensionality further to 2D for visualisation.
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Penultimate Layer Representation of Breakout

Breakout t-SNE Breakout t-SNE

Figure: Colour by max Q value. Figure: Colour by time point.
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Labelled Breakout t-SNE
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Penultimate Layer Representation of Space Invaders

Space_invaders t-SNE

Space_invaders t-SNE

1600

1400

1200

1000

Figure: Colour by max Q value. Figure: Colour by time point.
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Visualised where the agent is looking using saliency maps.

Visualised what features the agent is looking for using
activation maximisation.

Visualised how the agent associates these structures by
dimensionality reduction of higher-level features.

Future work:
e Automate the SAMDP analysis process.
o Use recurrent neural networks (better for continuous tasks).
e Use generative attention networks to build saliency into
network.
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Thank you for listening.
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